INDIAN SCHOOL MUSCAT FIRST PRELIMINARY EXAMINATION MATHEMATICS

CLASS: XII
Sub.Code: 041
Time Allotted: 3 Hrs
10.01.2019

General Instructions:

(i) All questions are compulsory.
(ii) Questions in section A are very short answer type questions carrying 1 mark each.
(iii) Questions in section B are short- answer type questions carrying 2 marks each.
(iv) Questions in section C are long answer I type questions carrying 4 marks each.
(v) Questions in section D are long answer II type questions carrying 6 marks each.

SECTION- A (Questions 1 to 4 carry 1 mark each)

1. For what value of x, the matrix $\left[\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right]$ is singular?
2. A coin is tossed three times. Find $P(E \mid F)$ if, $\mathrm{E}=$ at most two tails; $\mathrm{F}=$ at least one tail.

OR

A card is drawn from a well- shuffled deck of 52 cards. If event E is that the card drawn is a club and event F is that the card drawn is an ace. Show that the two events are independent.
3. If $\frac{1}{2} \cos ^{-1}\left(\frac{4}{5}\right)=\tan ^{-1} x$, find the value of x.
4. The equation of a line is given by $\frac{2 x-5}{4}=\frac{y+4}{3}=\frac{6-z}{6}$. Find the direction cosines of a line parallel to the above line.

SECTION-B (Questions 5 to 12 carry 2 marks each)

5. Find the value of λ, so that the following two lines are perpendicular:

$$
\frac{x-1}{4}=\frac{y+2}{3 \lambda}=\frac{z-1}{5} \text { and } \frac{x+1}{2 \lambda}=\frac{y-1}{1}=\frac{z+2}{3} .
$$

6. Show that the vectors $\vec{a}=-2 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}, \vec{b}=-2 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$ and $\vec{c}=4 \hat{\imath}-2 \hat{\jmath}-2 \hat{k}$ are coplanar.
7. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
8. Find the slopes of the tangent and the normal to the curve $y=\frac{(x-2)(x+1)}{(x+3)}$ at the points where it cuts the X -axis.

OR

Prove that the function $y=\left[\frac{4 \sin x}{2+\cos x}-x\right]$ is an increasing function of x in $\left(0, \frac{\pi}{2}\right)$.
9. Find the matrix X so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
10. Find the mean and variance of the number of tails in three tosses of a fair coin.
11. Find the equation of the plane that contains the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y-3 z=5$ and $3 x+3 y-z=0$.

OR

Find the equation of the plane passing through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and through the point $(2,2,1)$.
12. Form the differential equation of the family of circles touching the X - axis at origin.

SECTION-C (Questions 13 to 23 carry 4 marks each)

13. Evaluate: $\int_{0}^{\pi / 2}(\sqrt{\tan x}+\sqrt{\cot x}) d x$

OR

Evaluate using properties of definite integrals : $\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$
14. Evaluate $\int_{1}^{3}\left(3 x^{2}-5\right) d x$ by the method of limit of sum.
15.

Using properties of determinants, prove that: $\left|\begin{array}{ccc}a+b x^{2} & c+d x^{2} & p+q x^{2} \\ a x^{2}+b & c x^{2}+d & p x^{2}+q \\ u & v & w\end{array}\right|=$ $\left(x^{4}-1\right)\left|\begin{array}{lll}b & d & q \\ a & c & p \\ u & v & w\end{array}\right|$

OR

Using properties of determinants, solve for $x:\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-27 & 3 x-64\end{array}\right|=0$.
16. If $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \hat{k}, \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \hat{k}$ and $\vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$.
17. Evaluate : $\int \frac{2 x^{2}+5 x+7}{(x-2)(x-3)^{2}} d x$
18. If $f(x)=\left\{\begin{array}{cll}a x+b & \text { if } & x>2 \\ 7 x-4 & \text { if } & x=2 \\ 3 a x-2 b & \text { if } & x<2\end{array}\right.$ is continuous at $x=2$, find the values of a and b.
19. Solve the differential equation: $\cos ^{2} x\left(\frac{d y}{d x}\right)+y=\tan x$.

OR

Solve the differential equation: $y e^{y} d x=\left(y^{3}+2 x e^{y}\right) d y$, given that $y(0)=1$.
20. Find the particular solution of the differential equation given that $y=1$ when $x=1$: $\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$.
21. In a group of 400 people, 160 are smokers and non-vegetarians, 100 are smokers and vegetarians and the remaining are non- smokers and vegetarians. The probabilities of getting a particular chest disease are $35 \%, 20 \%$ and 10% respectively. A person is chosen from the group at random and is found to be suffering from the chest disease. What is the probability that the selected person is a smoker and non- vegetarian?
22. Differentiate $y=x^{\tan x}+(\tan x)^{x}$ and find $\frac{d y}{d x}$.
23. Show that: $\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right]=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$

SECTION-D (Questions 24 to 29 carry 6 marks each)

24. Show that the semi- vertical angle of a cone of maximum volume and given slant height is $\tan ^{-1}(\sqrt{2})$.
25. Using integration, find the area of the region bounded by the line $x-y+2=0$ and the curve $x^{2}=y$.
OR
Using integration, find the area of the following region: $\left\{(x, y):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$
26. Show that the lines $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-3}{-5}$ and $\frac{x-3}{1}=\frac{y-4}{-3}=\frac{z+2}{2}$ intersect. Also find the point of intersection.
27.

If $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & 3 & -1 \\ -2 & 1 & 1\end{array}\right]$, find A^{-1} and use A^{-1} to solve the following system of equations:

$$
2 x+y+3 z=9, \quad x+3 y-z=2,-2 x+y+z=7
$$

OR

Using elementary transformation, find the inverse of the matrix: $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$
28. A manufacturer makes two types of products A and B. Both products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of the product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at a profit of Rs. 7 and each unit of product B at a profit of Rs.4. Find the production level per day for maximum profit graphically. Also find the maximum profit.
29. A binary operation * is defined on the set $\mathrm{X}=\mathrm{R}-\{-1\}$ by $x * y=x+y+x y, x, y \in \mathrm{X}$. Check whether * is commutative and associative. Find the identity element and also find the inverse of each element of X.

OR

Let $\mathrm{A}=\mathrm{Q} \times \mathrm{Q}$ where Q is the set of rational numbers and * be the binary operation on A defined by $(a, b) *(c, d)=(a c, b+a d)$ for $(a, b),(c, d) \in A$. Then find:
(i) the identity element of * in A.
(ii) invertible element of (a, b) and hence write the inverse of elements $(5,3)$ and $\left(\frac{1}{2}, 4\right)$.

End of the Question Paper

